If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.75x^2+4x-125=0
a = 1.75; b = 4; c = -125;
Δ = b2-4ac
Δ = 42-4·1.75·(-125)
Δ = 891
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{891}=\sqrt{81*11}=\sqrt{81}*\sqrt{11}=9\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-9\sqrt{11}}{2*1.75}=\frac{-4-9\sqrt{11}}{3.5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+9\sqrt{11}}{2*1.75}=\frac{-4+9\sqrt{11}}{3.5} $
| 9z+5=32 | | X+6/5=1-x+1/6 | | -24=2(6r-7) | | 20-3n=-29 | | 7(3k-2)=15-5k | | 0.1t=46 | | 115+(5x+10)=180 | | 8x+5x=-27 | | 0.008g=28 | | 1/3x-1/5=12/5 | | 81x^2-20=5 | | 12y-5=13 | | |x-3|+5=0 | | 4x+9=2^3 | | x+2x+18=90 | | 9x-2/12*47=896 | | 3x+4+8x-4=108 | | 3x/2+4-1=48 | | 10x+35=13x+5 | | 10x=35=13x+5 | | 8y+24=2y-3 | | (2y-5)=115 | | 27+33+x=90 | | (3x+20)=(x+50) | | -x2+80x+1500=0 | | 2/3x+1=2/3x+-1 | | 9/10+5/x=1 | | 6n=2/4 | | -x/6.1=-0.6 | | 3y-2=5y-6 | | -(2/5)x=1 | | x/4=8.5 |